Learning and Inference in Structured Prediction Tutorial AAAI

Gourab Kundu IBM Research

Amortized Inference

Part 3: Amortized Inference
\square Overview
\square Amortization at Inference Time:

- Theorems
- Decomposition
- Results
\square Amortization during Learning:
- Approximate Inference
- Results

Inference

S1	S2	POS	different but their
output structures are			
He	They	PRP	the same

After inferring the POS structure for S1,
Can we speed up inference for S2 ?

Can we make the k -th inference problem cheaper than the first?

Amortized Inference [Kundu, Srikumar \& Roth, EMNLP-12,ACL-13]

- We formulate the problem of amortized inference: reducing inference time over the lifetime of an NLP tool
- We develop conditions under which the solution of a new, previously unseen problem, can be exactly inferred from earlier solutions without invoking a solver.
- This results in a family of exact inference schemes
\square Algorithms are invariant to the underlying solver; we simply reduce the number of calls to the solver
- Significant improvements both in terms of solver calls and wall clock time in several structured prediction tasks

Entity Relation Extraction task

- The goal is to find a consistent assignment of entity types to all entities and relation types to all relations
\square Consistency constraint: A spouse relation can only hold between two person entities and cannot hold between two location entities

ILP Formulation for Entity Relation Task

Person Person Location Location

Dole 's wife, Elizabeth, is a native of Champaign Illinois

spouse

born_in
Located_at

Dole

PER	0.5
LOC	0.3
ORG	0.2

Elizabeth

PER	0.6
LOC	0.1
ORG	0.3

Dole-Elizabeth	
spouse	0.7
born_in	0.1
Located_at	0.1
No-relation	0.1

ILP Formulation

Dole			Elizabeth		
PER	0.5	y1	PER	0.6	y4
LOC	0.3	y2	LOC	0.1	y5
ORG	0.2	y3	ORG	0.3	y6

Dole-Elizabeth

spouse	0.7	y7
born_in	0.1	y8
Located_at	0.1	y9
No-relation	0.1	y10

$$
\begin{aligned}
& \text { maximize } \\
& 0.5 y 1+0.3 y 2+0.2 y 3+ \\
& 0.6 y 4+0.1 y 5+0.3 y 6+ \\
& 0.7 y 7+0.1 y 8+0.1 y 9+0.1 y 10 \\
& \\
& \text { subj to yi } \varepsilon\{0,1\} \\
& y 1+y 2+y 3=1 \\
& y 4+y 5+y 6=1 \\
& y 7+y 8+y 9+y 10=1 \\
& 2 y 7-y 1-y 4<=0
\end{aligned}
$$

A spouse relation can only hold between two person entities

Amortized Inference for ILP

- We can write the ILP as

$$
\begin{aligned}
& \arg \max _{\mathrm{y}} \mathrm{cy} \\
& \mathrm{Ay} \leq \boldsymbol{b} \\
& \mathbf{y}_{\mathrm{i}} \in\{0,1\}
\end{aligned}
$$

- Inference problems discussed in previous sections can be represented as 0-1 ILPs.

maximize

$$
0.5 y 1+0.3 y 2+0.2 y 3+
$$

$0.6 y 4+0.1 y 5+0.3 y 6+$
$0.7 \mathrm{y} 7+0.1 \mathrm{y} 8+0.1 \mathrm{y} 9+0.1 \mathrm{y} 10$
subj to yi $\varepsilon\{0,1\}$
$y 1+y 2+y 3=1$
$y 4+y 5+y 6=1$
$\mathrm{y} 7+\mathrm{y} 8+\mathrm{y} 9+\mathrm{y} 10=1$
$2 y 7-y 1-y 4<=0$

Preliminary (1)

objective vector

P	\searrow
$\max 2 y_{1}+3 y_{2}+2 y_{3}+1.0 y_{4}$	
$y_{1}+y_{2} \leq 1$	$\mathrm{C}_{\mathrm{p}}=$
$y_{3}+y_{4} \leq 1$	

Preliminary (2)

optimal solution

2
3
2
1

Preliminary (4)

- We define an equivalence class as the set of ILPs that have:
- the same number of inference variables
- the same feasible set (same constraints modulo renaming)

$$
\begin{gathered}
\max 2 y_{1}+3 y_{2}+2 y_{3}+y_{4} \\
y_{1}+y_{2} \leq 1 \\
y_{3}+y_{4} \leq 1
\end{gathered}
$$

$\max 2 y_{1}+4 y_{2}+2 y_{3}+0.5 y_{4}$

$$
\begin{aligned}
& y_{1}+y_{2} \leq 1 \\
& y_{3}+y_{4} \leq 1
\end{aligned}
$$

\# of variables $=4$

Recap: The Recipe
Given:
\square A cache of solved ILPs and a new problem

```
If THEOREM_SATISFIED(cache, new problem)
then
    SOLUTION(new problem) = old solution
Else
    Call base solver and update cache
End
```

\square We will show four different theorems.

Amortized Inference

Part 3: Amortized Inference
\square Overview
\square Amortization at Inference Time:

- Theorems
- Decomposition
\square Amortization during Learning:
- Approximate Inference
- Results

Intuition of Theorem I

Theorem I

Denote: $\delta \mathbf{c}=\mathbf{c}_{\mathrm{Q}}-\mathrm{c}_{\mathrm{P}}$

$$
\begin{aligned}
& y_{P, i}^{*}=0 \Rightarrow c_{Q, i} \leq c_{P, i} \Rightarrow \delta c_{i} \leq 0 \Rightarrow\left(2 y_{P, i}^{*}-1\right) \delta c_{i} \geq 0 \\
& \mathbf{y}_{\mathrm{P}, \mathrm{i}}^{*}=1 \Rightarrow \mathbf{c}_{\mathrm{Q}, \mathrm{i}} \geq \mathrm{c}_{\mathrm{P}, \mathrm{i}} \Rightarrow \delta \mathrm{c}_{\mathrm{i}} \geq 0 \quad\left(2 \mathrm{y}_{\mathrm{P}, \mathrm{i}}^{*}-1\right) \delta \mathrm{c}_{\mathrm{i}} \geq 0
\end{aligned}
$$

Full Statement of Theorem I

Theorem:

- Let $y^{*}{ }_{P}$ be the optimal solution of an ILP P. Assume that an ILP Q
\square Is in the same equivalence class as P
\square And, For each $i \in\left\{1, \ldots, n_{p}\right\}\left(2 y_{p, i}^{*}-1\right) \delta c_{i} \geq 0$, where $\delta \mathbf{c}=\mathbf{c}_{\mathrm{Q}}-\mathbf{c}_{\mathrm{P}}$
- Then, without solving Q, we can guarantee that the optimal solution of Q is $y^{*}{ }_{Q}=y^{*}{ }_{P}$

Intuition of Theorem II (Geometric Interpretation)

Formal Statement of Theorem II

Theorem:

- Assume we have seen m ILP problems $\left\{P_{1}, P_{2}, \ldots, P_{m}\right\}$
\square All are in the same equivalence class
\square All have the same optimal solution
- Let ILP Q be a new problem s.t.
$\square Q$ is in the same equivalence class as $P_{1}, P_{2}, \ldots, P_{m}$
\square There exists an $\mathbf{z} \geq \mathbf{0}$ such that $\mathbf{c}_{\mathrm{Q}}=\sum \mathbf{z}_{\mathrm{i}} \mathbf{c}_{\mathrm{Pi}}$
- Then, without solving Q , we can guarantee that the optimal solution of Q is $y^{*}{ }_{Q}=y^{*}{ }_{P i}$

Proof of Theorem II

P1

P2

$\max \quad \mathrm{c}_{\mathrm{P} 2} \cdot \mathrm{y}$
subj to $A y \leq b$

- Let y^{*} be the optimal solution of both P1 and P2
$\square c_{P_{1}} \cdot y^{*} \geq c_{p 1} \cdot y^{\prime}$ and $c_{P 2} \cdot y^{*} \geq c_{P 2} \cdot y^{\prime}$
$\square\left(z_{1} c_{p 1}+z_{2} c_{P 2}\right) \cdot y^{*} \geq\left(z_{1} c_{p 1}+z_{2} c_{p 2}\right) \cdot y^{\prime}$ if $z_{1}, z_{2} \geq 0$
- y^{*} is optimal for any ILP with objective ($\left.z_{1} c_{p 1}+z_{2} c_{P 2}\right)$ with $\mathrm{z}_{1}, \mathrm{z}_{2} \geq 0$ and same constraint set.

Formal Statement of Theorem III

Theorem:

- Assume we have seen m ILP problems $\left\{P_{1}, P_{2}, \ldots, P_{m}\right\}$
\square All are in the same equivalence class
\square All have the same optimal solution
- Let ILP Q be a new problem s.t.
$\square Q$ is in the same equivalence class as $P_{1}, P_{2}, \ldots, P_{m}$
\square There exists an $\mathbf{z} \geq \mathbf{0}$ such that $\delta \mathbf{c}=\mathbf{c}_{\mathrm{Q}}-\sum \mathbf{z}_{\mathrm{i}} \mathbf{c}_{\mathrm{pi}}$ and $\left(2 y_{p, i}^{*}-1\right) \delta c_{i} \geq 0$
- Then, without solving Q, we can guarantee that the optimal solution of Q is $y^{*}{ }_{Q}=y^{*}{ }_{P i}$

Proof of Theorem III

P1

P2
$\max \quad \mathbf{c}_{\mathrm{P} 1} \cdot \mathbf{y} \quad \max \mathrm{C}_{\mathrm{P} 2} \cdot \mathrm{y} \quad \max \quad \mathrm{c}_{\mathrm{R}} \cdot \mathbf{y} \quad \max \quad \mathrm{C}_{\mathrm{Q}} \cdot \mathrm{y}$
subj to $A y \leq b$ subj to $A y \leq b$ subj to $A y \leq b$ subj to $A y \leq b$

- Let y^{*} be the optimal solution of both P1 and P2
- Theorem II: P1, P2 => R

$$
\square \text { if } c_{R}=z_{1} c_{P_{1}}+z_{2} c_{P 2}, z_{1}, z_{2}>=0=>y_{R}^{*}=y^{*}{ }_{P 1}=y^{*}{ }_{P 2}
$$

- Theorem I: R => Q
\square if $\left(2 y^{*}{ }_{R, i}-1\right) \delta c_{i} \geq 0, \delta c=c_{Q}-c_{R}=>y^{*}{ }_{Q}=y^{*}{ }_{R}$
\square if $\left(2 y^{*}{ }_{p 1, i}-1\right) \delta c_{i} \geq 0, \delta c=c_{Q}-\sum z_{i} c_{p i}=>y^{*}{ }_{Q}=y^{*}{ }_{p 1}$

$$
\begin{array}{ll}
\max & c_{p} \cdot y \\
\text { subj to } & A_{1} y \leq b_{1}, A_{2} y \leq b_{2}
\end{array}
$$

Q

$\max c_{\mathrm{Q}} \cdot \mathrm{y}$
subj to $A_{1} y \leq b_{1}, A_{2} y \leq b_{2}$

- Let y^{*} be optimal for P with structured margin δ
$\square c_{p} \cdot y^{*} \geq c_{p} \cdot y+\delta$ for all $y, A_{1} y \leq b_{1}, A_{2} y \leq b_{2}$
- Objective increase for y from P to Q is $\left(c_{Q}-c_{P}\right) \cdot y$
- Objective decrease for y^{*} from P to Q is $\left(c_{P}-c_{Q}\right) \cdot y^{*}$
- y^{*} is optimal for Q if
$\square\left(c_{Q}-c_{P}\right) \cdot y+\left(c_{P}-c_{Q}\right) \cdot y^{*} \leq \delta$ for all $y, A_{1} y \leq b_{1}, A_{2} y \leq b_{2}$
$\square\left(c_{Q}-c_{p}\right) \cdot y+\left(c_{P}-c_{Q}\right) \cdot y^{*} \leq \delta$ for all $y, A_{1} y \leq b_{1}$

Amortized Inference Experiments

- Setup
\square Verb semantic role labeling
- Other results also at the end of the section
\square Speedup \& Accuracy are measured over WSJ test set (Section 23)
\square Baseline is solving ILP using Gurobi solver.
- For amortization
\square Cache 250,000 SRL inference problems from Gigaword
\square For each problem in test set, invoke an amortized inference algorithm

Speedup \& Accuracy

Speedup $=\frac{\text { number of inference calls without amortization }}{\text { number of inference calls with amortization }}$

Amortization schemes [EMNLP'12, ACL'13]

Amortized Inference

Part 3: Amortized Inference
\square Overview
\square Amortization at Inference Time:

- Theorems
- Decomposition
- Results
\square Amortization during Learning:
- Approximate Inference
- Results
- Amortized inference
\square Making inference faster by re-using previous computations
- Techniques for amortized inference
- But these are not useful if the full structure is not redundant!

Decomposed amortized inference

- Taking advantage of redundancy in components of structures
\square Extend amortization techniques to cases where the full structured output may not be repeated
\square Store partial computations of "components" for use in future inference problems

Entity Relation Extraction task

Dole 's wife, Elizabeth, is a native of Champaign, Illinois . $\underset{\text { spouse }}{\text { Person }}$ Person $\xrightarrow[\text { born_in }]{ }$ Location $\xrightarrow[\text { Located_at }]{\text { Location }}$

$$
\begin{aligned}
& \text { maximize } \\
& 0.5 y 1+0.3 y 2+0.2 \mathrm{y} 3+ \\
& 0.6 y 4+0.1 \mathrm{y} 5+0.3 \mathrm{y} 6+ \\
& 0.7 \mathrm{y} 7+0.1 \mathrm{y} 8+0.1 \mathrm{y} 9+0.1 \mathrm{y} 10 \\
& + \text { additional variable } \\
& \hline
\end{aligned}
$$

subj to yi $\varepsilon\{0,1\}$
$y 1+y 2+y 3=1$
$y 4+y 5+y 6=1$
$y 7+y 8+y 9+y 10=1$
$2 y 7-y 1-y 4<=0$

+ additional constraints

Decomposed inference for ER task

Consistent assignment of entity types to first two entities (Dole, Elizabeth) and relation types to relations among these entities

Consistent assignment of entity types to last two entities (Champaign, Illinois) and relation types to relations among these entities

Re-introduce constraints using Lagrangian Relaxation
Rush \& Collins, A Tutorial on Dual Decomposition and Lagrangian Relaxation for
Inference in Natural Language Processing,JAIR, 2011.

Amortized Inference

Part 3: Amortized Inference
\square Overview
\square Amortization at Inference Time:

- Theorems
- Decomposition
- Results
\square Amortization during Learning:
- Approximate Inference
- Results

Speedup \& Accuracy

Speedup $=\frac{\text { number of inference calls without amortization }}{\text { number of inference calls with amortization }}$

Amortization schemes [EMNLP ${ }^{\prime} 12$, ACL'13]

Reduction in inference calls (SRL)

\square Num. inference calls \square +decomposition

100

Reduction in inference calls (Entity-relation extraction)

$■$ Num. inference calls \quad +decomposition

- We have given theorems that allow savings of $5 / 6$ of the calls to your favorite inference engine.
- But, there is some cost in
\square Checking the conditions of the theorems
\square Accessing the cache
- Our implementations are clearly not state-of-the-art but....

Reduction in wall-clock time (SRL)

\square Num. inference calls ■ +decomposition

100
Solve only one in 2.6 problems
54.8

Amortized Inference

Part 3: Amortized Inference
\square Overview
\square Amortization at Inference Time:

- Theorems
- Decomposition
- Results
\square Amortization during Learning:
- Approximate Inference
- Results

Redundancy in Learning Phase

- [AAAI 15]: Structural Learning with Amortized Inference

Amortization during Learning w/ Theorem I

- We can apply Theorem I to amortize inference calls during learning.
- Recall: Condition of Theorem 1:
\square For each $\mathrm{i} \in\left\{1, \ldots, \mathrm{n}_{\mathrm{p}}\right\}\left(2 \mathrm{y}_{\mathrm{p}, \mathrm{i}}^{*}-1\right) \delta \mathrm{c}_{\mathrm{i}} \geq 0$, where $\delta \mathrm{c}=$

$$
\mathbf{c}_{\mathrm{Q}}-\mathbf{c}_{\mathrm{P}}
$$

- Guarantee of exactness: $y^{*}{ }_{Q}=y^{*}{ }_{p}$

Amortization during Learning w/ Approximate Solution

- Approximate solutions to inference problems can be good enough to guide learning.
- New Condition:
\square For each $\mathrm{i} \in\left\{1, \ldots, \mathrm{n}_{\mathrm{p}}\right\}\left(2 \mathrm{y}_{\mathrm{p}, \mathrm{i}}-1\right) \delta \mathrm{c}_{\mathrm{i}} \geq-\varepsilon / c_{Q, i} /$, where $\delta \mathbf{c}=\mathbf{c}_{\mathrm{Q}}-\mathbf{c}_{\mathrm{P}}$
- Guarantee of Approximation
$\square y^{*}{ }_{p}$ is a $1 /(1+M \varepsilon)$ approximate solution to Q.

Learning with Approximate Amortized Inference
－Learning Structured SVM with approximate amortized inference gives a model with bounded empirical risk
\square Finley，T．，and Joachims，T．2008．Training structural SVMs when exact inference is intractable．In ICML 2008
\square our formulation is an under－generating approximation with approximation ratio $1 /(1+M \varepsilon)$
－Dual coordinate descent for structured SVM can still return an exact model even if approx．amortized inference is used．
\square call exact inference after every τ iterations

Amortized Inference

Part 3: Amortized Inference
\square Overview
\square Amortization at Inference Time:

- Theorems
- Decomposition
- Results
\square Amortization during Learning:
- Approximate Inference
- Results
\# Solver Calls (Entity-Relation Extraction)
\% Solver Calls 60

20

0 Exact (Exact

Amortized Inference

Part 3: Amortized Inference
\square Amortization at Inference Time:

- Theorems
- Decomposition
- Results
\square Amortization during Learning:
- Approximate Inference
- Results

